
Klave
White Paper

JUNE 2023

1.0. Abstract

2.0. Introduction

 2.1. What is Klave?

	 2.2.	 Confidential	Computing	meets	DLT	Technology

	 2.3.	 Confidential	Computing	as	a	platform,	made	simple

	 2.4.	 An	open	platform	for	composable	Apps

	 2.5.	 A	platform	honest	by	design

3.0. Concept behind Klave

	 3.1.	 Confidential	Computing

	 3.2.	 Trusted	Execution	Environment	(TEE)

 3.2.1 Intel SGX

	 	 3.2.2	 Enclave

	 3.3.	 Distributed	Ledger	Technology

4.0. What is a Trustless PaaS?

	 4.1.	 Klave	as	a	TPaaS

	 4.2.	 Key	Characteristics	of	Klave	as	a	TPaaS

5.0. What is a trustless app?

	 5.1.	 Characteristics	of	a	trustless	app

	 5.2.	 Bringing	back	accountability	to	the	business	code	

6.0. Klave design principles

7.0. Klave architecture

 7.1. Isolation

White Paper Contents

03

04

04

04

04

05

05

06

06

08

10

10

10

12

12

12

13

13

14

15

16

16

	 	 7.1.1	 Hardware	isolation

	 	 7.1.2.	 Runtime	isolation

 7.1.3. Host isolation

	 	 7.1.4.	 Crypto-delegate

	 7.2.	 Node

	 7.3.	 Cluster	and	distributed	consensus	algorithm

	 	 7.3.1.	 BFT-Raft

	 	 7.3.2.	 Logchain

	 7.4.	 Secure	Connection	Protocol	(SCP)

	 7.5.	 Ledger	and	integrity

	 7.6.	 The	Klave	Network

8.0.	 Verifiability	and	attestations

9.0. User experience

 9.1.	 Application	scaffolding

	 9.2	 Queries	and	transactions

	 9.3.	 Subscriptions

	 9.4.	 Functionalities	provided	by	the	SDK

	 9.5	 Supported	languages	for	writing	applications

	 9.6	 How	to	connect	to	a	cluster	

	 9.7.	 Deployment	and	upgrades	

10.0. Conclusion

17

17

17

18

18

19

19

20

20

21

22

22

22

23

24

25

25

25

26

16

16

1.0. Abstract

1.0. Abstract

Trust	is	essential	to	all	relationships	and	establishing	trust	can	be	an	expensive	and	slow	process.	It	can	
also	be	riddled	with	human	errors	and	inconsistencies,	highlighted	in	many	recent	scandals	where	trust	
is	often	breached	and	abused.

‘Trust,	but	verify’	as	the	phrase	goes.	But	what	if	to	remediate,	we	had	to	trust	less?

Imagine	a	digital	world	where	you	could	verify	that	your	data	is	safe	and	secure.	A	world	where	your	
interactions	with	others,	companies	and	institutions	did	not	depend	on	blind	trust	and	you	could	verify	
that	the	systems	you	rely	upon,	worked	entirely	as	intended.			

Recent	developments	in	the	field	of	confidential	computing	and	trusted	execution	environments	(TEEs)	
have	paved	the	way	for	a	new	category	of	cryptographically	secure,	highly	available,	trustless	systems	
with	unparalleled	performance.	

A	technology	that	will	generalise	the	principle	of	falsification-resistant	computations	and	ledgers	while	
guaranteeing	integrity	and	privacy.	Revolutionising	the	way	we	interact	with	the	world	around	us.	

Join	us	in	designing	honesty	into	the	very	fabric	of	the	internet.	

03

designing	honesty	into	the	
very	fabric	of	the	internet

2.0. Introduction 04

2.0. Introduction

The	Klave	Network	empowers	developers	to	create	tamper-proof	trustless	applications	protected	by	
secure	hardware	and	cryptography.	Providing	the	infrastructure	for	developers	to	easily	develop,	deploy	
and	manage	trustless	applications,	bringing	honesty	by	design	to	the	web.

2.1. What is Klave?

Klave	 is	 a	 next-generation	 Trustless	 Platform	 as	 a	 Service	 (TPaaS).	 An	 open	 platform	 designed	 to	
enable	integrity	and	privacy	in	a	world	where	trust	is	hard	to	come	by.	It	provides	a	reliable	and	secure	
infrastructure	for	individuals	and	organisations	to	build	and	run	applications	without	fear	of	interference	
from	platform	providers	or	other	third	parties.	Apps	are	executed	on	Klave	with	the	assurance	that	the	
code	is	running	as	intended	and	that	third	parties	(including	platform	providers)	cannot	observe	or	alter	
the	code	during	execution.	In	addition,	Klave	supports	privacy	use	cases	as	data	is	always	kept	secret	
(always	 including	 from	platform	providers).	 Providing	 technical	 evidence	and	 cryptographic	proof	 to	
enable	verification	every	step	of	the	way,	systematically.

2.2. Confidential Computing meets Distributed Ledger Technology

Klave	 is	 built	 upon	 a	 next-generation	 Distributed	 Ledger	 Technology	 (DLT)	 called	 Secure-Enclave	
Distributed	Ledger	Technology	 (SDLT)	 that	 combines	 the	power	of	 confidential	 computing	with	DLT.	
The	combination	of	these	technologies	achieves	 information	confidentiality	and	produces	proof	that	
the	integrity	of	the	process	has	not	been	compromised.	Klave’s	SDLT	is	a	high-performance	ledger	and	
transactional	system,	capable	of	supporting	any	application	and	serving	a	wide	range	of	purposes.

2.3. Confidential Computing as a platform, made simple

The	 technology	 behind	 confidential	 computing	 is	 complicated	 and	 not	 accessible	 to	 all	 developers.	
To	 keep	developers	 focused	on	 their	 critical	business	 code,	Klave	hides	all	 complexity	by	deploying	
applications	 within	 secure	 hardware	 enclaves,	 making	 them	 distributed	 by	 default,	 and	 ensuring	
associated	 ledgers	are	always	encrypted	and	 tamper-proof.	As	a	bonus,	 it	 also	enables	 confidential	
computing	use	cases	from	the	get-go.

2.4. An open platform for composable Apps

Klave	makes	it	easy	for	developers	to	develop,	deploy	and	manage	applications	by	integrating	natively	
within	their	workflow	and	by	enabling	them	to	code	in	the	language	they	love	most.	In	addition,	Klave	
focuses	on	transparency	by	being	open-source	and	accompanying	the	development	lifecycle	from	the	
gpg	commit	signature	of	the	developer	to	the	application	versioning	and	packaging.

2.5. A platform honest by design

With	Klave,	 you	 can	attest	 every	 step	of	 the	way	 that	everything	 is	 going	as	expected.	We	call	 that	
an	honesty	machine.	By	 leveraging	privacy-enhancing	technology	and	advanced	cryptography,	Klave	
provides	technical	evidence	and	proof	of	honesty	systematically.	

05

3.0. Concept behind Klave

3.1. Confidential Computing

Confidential	Computing	offers	an	additional	security	layer	to	protect	business	logic	and	preserve	the	
privacy	and	integrity	of	data	while	it’s	being	processed.

Disk	encryption	 is	a	technique	to	keep	data	private	while	at	rest,	 for	example,	when	it’s	stored	on	a	
backup	storage	device.	

Network	 protocols	which	 encrypt	 data	 are	 commonly	 used	 to	 protect	 data	while	 being	 transferred	
between	remote	machines,	preventing	attackers	from	snooping	on	network	connections	or	 internet	
routers	from	accessing	or	tampering	with	it.

However,	once	data	arrives	at	its	destination	and	is	decrypted	to	be	processed,	it	can	be	observed	and	
even	tampered	with.

High-privileged	users,	 people	with	 physical	 access	 to	 the	 servers	 or	 attackers	who	manage	 to	 gain	
equivalent	access	can	see,	copy,	or	modify	data	and	even	tamper	with	the	results	of	the	computations	
being	performed.

Confidential	computing	brings	new	ways	to	protect	data	while	in	use.

Data	 and	 computations	 can	 be	 protected	 using	 hardware-based	 TEEs,	 relying	 on	 the	 traditional	
techniques	for	protecting	it	at	rest	and	in	transit,	as	well	as	introducing	new	techniques	to	deal	with	
potential	attacks	from	the	elements	that	were	implicitly	trusted	before,	but	no	longer	need	to	be.

06

With	traditional	computing,	the	entire	software	stack	such	as	eventual	services	from	cloud	providers,	
BIOS	and	firmware,	the	host	operating	system	and/or	hypervisor	and	guest	operating	system,	to	the	
actual	application	doing	the	business	logic	and	all	the	libraries	it	depends	on,	need	to	be	trusted.

07

Confidential	Computing	introduces	different	scopes	of	isolation	to	reduce	the	number	of	layers	which	
can	access	private	data.

With Virtual Machine isolation,	 only	 the	guest	operating	 system,	application	and	 libraries	have	
access	to	private	data.	The	virtual	machine	runs	on	the	TEE	preventing	access	from	the	hypervisor	
or	host	operating	system.	An	attacker	compromising	the	host	operating	system	won’t	have	access	
to	private	data,	but	one	who	compromises	the	guest	operating	system	and	escalates	privileges	will.

Application isolation	 reduces	 the	 trust	boundary	 further,	so	 the	operating	system	doesn’t	have	
access	to	private	data.	Only	the	application	and	its	dependencies	are	running	on	the	TEE	and	therefore	
an	attacker	would	need	to	compromise	the	application	logic	to	gain	access	to	private	data.

Library	isolation	reduces	the	trust	boundary	even	further	by	running	only	the	libraries	processing	
private	data	on	 the	TEE.	The	part	of	 the	application	 that	doesn’t	process	 the	private	data	doesn’t	
need	to	be	trusted	but	may	remain	responsible	for	other	tasks	such	as	forwarding	messages	in	and	
out	of	the	TEE.

 Library

Application

Guest OS

Hypervisor

Host OS

BIOS /
Firmware

Cloud / On-site
infrastructure

Trust boundary

Traditional computing Confidential computing

 Library

Application

Guest OS

Hypervisor

Host OS

BIOS /
Firmware

Cloud / On-site
infrastructure

Virtual Machine isolation

Trust boundary

 Library

Application

Guest OS

Hypervisor

Host OS

BIOS /
Firmware

Cloud / On-site
infrastructure

Application isolation

Trust boundary

 Library

Application

Guest OS

Hypervisor

Host OS

BIOS /
Firmware

Cloud / On-site
infrastructure

Library isolation

Trust boundary

Fig. 1 - Comparison of trust boundaries between traditional computing and several confidential computing isolation scopes.

08

Klave	 leverages	 on	 the	 library	 isolation	 model	 to	 reduce	 the	 trust	 boundaries	 to	 their	 minimum.	
Confidential	Computing	is	a	huge	paradigm	shift.	When	using	attestable	TEEs	it	gives	the	data	owners	
proof	of	how	their	data	is	going	to	be	used	before	they	submit	it	and	guarantees	the	integrity	of	the	
computations’	results.

3.2. Trusted Execution Environment (TEE)

In	 Klave,	 to	 keep	 data	 and	 logic	 protected,	 Confidential	 Computing	 relies	 on	 Trusted	 Execution	
Environments	(TEEs)	capable	of	providing	the	following	guarantees:

•	 Data	integrity

•	 Data	confidentiality

•	 Code	integrity

•	 Code	confidentiality

•	 Attestability

•	 Programmability

•	 Recoverability

The	TEE	will	ensure	the	logic	and	data	being	computed	cannot	normally	be	accessed	by	anyone	nor	can	
it	be	tampered	with.

Data	going	in	and	out	of	the	TEE	is	end-to-end	encrypted,	from	the	data	owner’s	system	to	the	library	
responsible	for	computing	it.

The	 logic	 loaded	 onto	 the	 TEE	 cannot	 be	 tampered	with,	meaning	 that	 the	 data	 will	 only	 be	 used	
according	to	the	algorithms	within	the	library.

The	library	loaded	onto	the	TEE	is	often	referred	to	as	an	enclave.

On	hardware-based	TEEs,	as	is	the	case	of	Intel®	SGX.	CPUs	and	enclaves	are	loaded	into	Processor
Reserved	Memory	(PRM)	that	is	encrypted	using	a	key	only	known	to	the	hardware.

09

The	operating	system,	highly	privileged	users	or	even	system	administrators	with	physical	access	to	the	
hardware	cannot	normally	see	the	data	nor	tamper	with	the	logic.

TEEs	provide	proof	of	which	library	has	been	loaded	onto	it	and	clients	communicating	with	it	can	follow	
the	attestation	process	to	verify	such	proof.

The	attestation	process	also	provides	evidence	that	the	logic	is	indeed	loaded	onto	a	genuine	TEE	and	
whether	the	platform	is	up-to-date	and	contains	mitigations	for	known	vulnerabilities.

When	vulnerabilities	are	discovered	and	mitigated,	systems	relying	on	TEEs	need	to	be	updated.	The	
mitigation	may	require	firmware	upgrades,	enclave	libraries	to	be	updated	or	changes	to	configuration	
options.	This	process	is	often	referred	to	as	Trusted	Computing	Base	Recovery	(TCB	recovery).

Network

Application

Guest OS

Hypervisor

Host OS

BIOS / Firmware

Enclave
App enclave

Drivers

App host

TEE

Hardware
PRM

Client

Memory

Fig. 2 - Diagram of end-to-end communication between a data owner and an enclave.

10

3.2.1. Intel® SGX

	Klave	uses	TEEs	provided	by	Intel®	SGX.	During	the	manufacturing	process	of	 Intel®	SGX	devices,	
two	keys	are	fused	to	the	hardware:	a	Root	Provisioning	Key	(RPK)	and	a	Root	Sealing	Key	(RSK).

•	 	Root	Provisioning	Key	(RPK)	-	This	is	a	randomly	generated	key	meant	to	identify	each	Intel	SGX	
device.	Intel	 is	responsible	for	the	safekeeping	of	all	generated	keys	as	they	will	be	part	of	the	
attestation	process	to	prove	the	genuineness	of	each	SGX	CPU.

•	 	Root	Sealing	Key	 (RSK)	 -	Similar	 to	 the	RPK,	 this	 is	a	 randomly	generated	key	unique	per	SGX	
device,	but,	unlike	the	RPK,	the	Root	Sealing	Key	is	only	known	to	the	CPU.

Intel	is	responsible	for	erasing	any	traces	of	the	generation	of	this	key.

	Root	keys	are	only	accessible	to	platform	enclaves	which	can	derive	keys	from	them	to	sign	data	
structures	involved	in	the	attestation	process.

They	are	also	used	for	sealing	and	other	key	derivations	accessible	by	enclaves.

3.2.2. Enclave

An	enclave	is	a	statically	linked	library	containing	the	logic	to	process	data.

	It’s	dynamically	linked	to	a	regular	user	space	process	running	on	unencrypted	memory	managed	
by	 the	operating	 system.	 The	process	 is	 responsible	 for	 creating	 the	 enclave	by	 communicating	
with	the	hardware,	via	runtime	libraries	and	drivers,	requesting	the	CPU	to	load	the	enclave	onto	its	
protected	memory.

3.3. Distributed Ledger Technology

Klave	leverages	on	a	next	generation	Distributed	Ledger	Technology	(DLT)	called	Secure	enclave	DLT	
(SDLT).

A	DLT	 is	basically	a	 technological	 infrastructure	around	a	distributed	database	and	a	consensus	
algorithm	allowing	simultaneous	access,	validation,	and	record	updating	across	all	network	nodes	
of	a	cluster.

The	distributed	ledger	goals	are	plural:

•	 Ensuring	resilience	by	distributing	a	copy	of	the	ledger	database	across	all	nodes	of	a	cluster

•	 	Keeping	the	integrity	of	the	network	by	recording	transactions	securely,	transparently	and	being	
immutable

•	 	Enabling	advanced	business	logic	that	automatically	executes	or	completes	based	on	prevailing	
conditions

11

Klave’s	SDLT	has	no	central	point	of	control	or	failure	and	is	therefore	more	resilient	to	attacks	and	less	
vulnerable	to	system-wide	failure.	Leveraging	a	consensus	algorithm	based	on	TEEs	capabilities	and	not	
on	classic	consensus	based	on	game	theory	such	as	Proof-of-Work	or	Proof-of-Stake,	making	it	secure	
against	Sybil	attack,	and	also	supporting	low	latency	and	high	throughput	enabling	transaction	instant	
finality.

Klave’s	 SDLT	 is	 used	 also	 to	 remove	 intermediaries	 and	 automate	 transactions	 through	 trustless	
applications	that	automatically	execute	when	conditions	are	met,	therefore	not	requiring	a	third	party	
or	human	 intervention.	Eliminating	the	need	for	 intermediaries	and	third	parties	 (including	platform	
providers)	is	a	key	characteristic	of	Klave	–	reducing	costs	and	increasing	efficiency.	

4.0. What is a Trustless PaaS? 12

4.0. What is a Trustless PaaS (TPaas)?

A	pioneer	of	the	concept	trustless	platform	as	a	service	(TPaaS),	Klave	is	an	innovative	variation	of	the	
traditional	PaaS.	It	is	designed	to	provide	an	execution	environment	for	applications	that	are	privacy-
enabling,	always	ensuring	computational	and	data	integrity	and	providing	attestation,	technical	evidence	
and	cryptographic	proof	to	enable	verifiability	by	the	user.

4.1. Klave as a TPaaS

In	 a	 nutshell,	 Klave	 as	 a	 TPaaS	 provides	 a	 reliable	 and	 secure	 infrastructure	 for	 individuals	 and	
organisations	to	build	and	run	applications	without	fear	of	interference	from	the	platform	provider	or	
other	third	parties.	Ultimately,	aiming	to	bring	accountability	back	to	the	business	code.

Like	 classic	 PaaS	 providers,	 Klave	 allows	 the	 deployment	 of	 stateful	 applications	 with	 any	 level	 of	
complexity	(full	Turing	completeness).	It	manages	scalability,	replication,	and	the	full	application	lifecycle	
from	commit	to	deployment.

Klave’s	infrastructure,	built	upon	cutting-edge	hardware	is	managed	by	the	Klave	team.

4.2. Key characteristics of Klave as a TPaaS

• Data	integrity	&	privacy	-	Klave	is	designed	to	prioritise	data	privacy	by	default	and	by	design.	
Data	is	always	kept	secret	and	tamper-proof	(including	from	the	platform	provider).	This	ensures	
data	integrity	and	confidentiality	at	the	platform	level.

• Falsification	resistance	&	computational	integrity	-	Klave	prevents	tampering	with	the	code	
deployed	by	design.	Ensuring	that	the	code	deployed	is	what	was	intended	by	the	user,	providing	a	
high	level	of	assurance	that	the	code	has	not	been	altered	and	there	is	no	malicious	code	injected	
during	execution.

• Verifiability	&	honesty	-	Klave	provides	attestation,	technical	evidence,	and	cryptographic	proof	
every	 step	of	 the	way	and	 is	 verifiable	by	 the	user.	Evidence	 that	 the	application’s	 code	 that	 is	
deployed	is	the	one	intended,	attestation	that	the	application	is	running	within	a	secure	hardware	
enclave,	and	cryptographic	proof	that	the	execution	is	as	intended	through	transaction	and	query	
signature.

5.0. What is a trustless app? 13

5.0. What is a trustless app?

A	trustless	app	combines	an	application	built	on	Klave	and	a	front-end	user	interface.	Like	open	APIs,	
on	Klave	public	applications	are	accessible	and	transparent	and	can	be	leveraged	by	your	trustless	app.

5.1. Characteristics of a trustless app

Applications	deployed	on	Klave	inherit	the	platform’s	characteristics	and	more.

• Turing complete	 -	 Klave	 provides	 a	 simple	 Software	 Development	 Kit	 (SDK)	 to	 facilitate	 the	
development	 of	 distributed	 confidentiality-driven	 applications	 (trustless	 applications)	 resulting	 in	
programs	that	can	be	deployed	on	Klave.	These	programs	can	use	free-form	business	logic,	including	
loops	and	can	perform	any	action	given	the	required	resources.

• 	Stateful	-	Applications	deployed	on	Klave	are	provided	with	a	private	ledger	to	manage	their	state.	
These	 ledgers	allow	for	complex	state	management	through	multiple	tables,	ensure	 integrity	and	
stay	encrypted	at	all	time.

• Deterministic	-	Given	a	set	of	input,	transactions	of	applications	deployed	on	Klave	will	eventually	
execute,	perform	the	same	function	and	provide	the	same	outcomes.

• 	Confidentiality	 -	Applications	are	provided	with	a	unique	identity	known	only	by	the	application	
runtime.	This	identity	is	leveraged	on	to	keep	data	secret	at	all	time	(in	transit,	at	rest	and	in	use)	
ensuring	confidentiality	and	privacy	by	design	(even	from	the	platform	provider).	However,	Trustless	
applications	are	the	final	frontier	in	terms	of	privacy	boundary.	If	needed,	data	could	be	exposed	by	
the	application.

• 	Integrity	-	Computational	and	data	integrity	are	inherited	autmatically	from	Klave.	All	data	stored	on	
Klave	are	tamper-proof	and	code	execution	is	falsification	resistant	thanks	to	secure	hardware	and	
cryptographic	primitives.

• Isolated	 -	 All	 applications	 deployed	 on	 Klave	 benefit	 from	 two	 layer	 of	 isolation.	 Klave	 leverage	
WebAssembly	and	each	applications	run	within	their	own	WASM	runtime	completely	isolated	from	
others.	In	addition,	all	applications	on	Klave	are	deployed	with	secure	hardware	enclave	running	in	
complete	isolation	of	the	OS.

• 	Verifiability	-	Applications	code,	deployment,	transactions	can	be	analyzed	and	are	guaranteed	to	
execute	a	predictable	ways.	In	addition,	application’s	ledger	structure	and	secure	hardware	enclave	
hosting	the	application	can	be	attested.

• Unique	 identity	 -	 	 Each	 Trustless	 app	have	 a	 unique	 identity	 only	 known	by	 them.	 This	 allows	
for	a	unique	fingerprint	used	for	secure	connection	and	encryption.	Bringing	explicit	transparency	
(signature),	security	(encryption	key	only	known	by	the	app)	and	integrity	to	the	app.

14

5.2. Bringing back accountability to the business code

Ultimately,	 the	accountability	and	privacy	boundary	are	brought	back	to	the	application.	The	platform	
prevents	interference	from	third	parties,	however,	if	the	application	deployed	is	extracting	the	data,	they	
are	not	secret	anymore.	Depending	on	use	cases,	this	will	push	application	developers	to	follow	trustless	
computing	principles	and	bring	transparency	by	sharing	their	source	code	for	community	inspection	and	
validation.	 	 Application	developers	 following	 these	principles	 could	protect	 themselves	 from	 the	 legal	
liability	of	seeing	their	clients’	data.	Moreover,	they	can	demonstrate	this	to	their	clients	and	it	can	be	a	key	
driver	in	many	business	propositions,	even	from	a	strictly	commercial	point	of	view.

6.0. Klave design principles 15

6.0. Klave’s design principles

In	a	rapidly	evolving	digital	landscape,	the	concept	of	trust	has	become	increasingly	important.	Individuals	
and	organisations	alike	seek	platforms	that	prioritise	integrity,	confidentiality,	and	the	ability	to	verify	
and	attest	to	the	actions	taken	within	the	system.	Klave’s	design	principles	are	built	upon	these	very	
needs.

• Trustless	-	At	the	heart	of	Klave	lies	the	mission	to	limit	trust	in	third	parties	(adversarial	or	not),	
including	the	platform	provider	itself.	This	radical	approach	recognises	the	potential	vulnerabilities	
and	 risks	 associated	with	 relying	 on	 external	 entities	 and	 seeks	 to	 empower	 users	with	 greater	
control	over	their	digital	experiences.	By	reducing	the	need	for	trust,	the	platform	fosters	a	sense	of	
security	and	transparency,	redefining	the	way	we	engage	with	technology.

• 	Confidentiality	&	Integrity	-	Klave	provides	confidentiality	and	integrity,	ensuring	that	data	always	
remains	confidential	and	unaltered.	Advanced	cryptography	and	cutting-edge	technologies	protect	
data	at	rest,	in	transit,	and	in	use	while	maintaining	the	integrity	of	data	and	business	logic,	preventing	
unauthorised	access	and	tampering.	Users	can	verify	that	their	data	and	business	logic	are	secure	
and	private,	bolstering	confidence	in	the	platform’s	reliability	and	compliance	with	regulations.

• Honesty	and	Verifiability	-	A	core	principle	of	this	platform	is	attestability	and	verifiability.	Every	
action,	 transaction	 and	 operation	 within	 the	 system	 is	 designed	 to	 be	 traceable	 and	 auditable.	
Through	the	innovative	implementation	of	cutting-edge	technologies	such	as	TEEs	and	DLT,	users	
can	ensure	that	the	integrity	of	their	data	and	operations	always	remains	intact.	The	emphasis	on	
honesty	empowers	users	to	validate	and	verify	the	actions	taken	within	the	platform,	cultivating	an	
environment	of	accountability,	without	the	need	for	trust.

• Developer centric	-	Klave	is	developer-centric,	prioritising	the	needs	and	ease	of	use	for	developers.	
Recognising	that	developers	are	the	driving	force	behind	the	creation	of	transformative	applications	
and	services,	the	platform	provides	a	comprehensive	suite	of	developer	tools,	libraries	and	resources.	
By	simplifying	the	development	process,	Klave	aims	to	unlock	the	full	potential	of	developers,	enabling	
them	to	create	innovative	solutions	without	unnecessary	obstacles	or	complexities..

7.0. Klave architecture 16

7.0. Klave’s architecture

Klave	combines	the	power	of	confidential	computing,	DLT	and	an	open	development	environment	to	
propel	trustless	applications.

7.1. Isolation

To	enable	confidential	computing,	applications	are	divided	into	two	parts:	the	untrusted	host	and	the	
trusted	enclave.	The	untrusted	component	runs	on	the	unsecured	operating	system,	while	the	enclave	
component	 runs	 within	 secure	 hardware.	 Enclaves	 provide	 secure	 computations	 and	 ensure	 the	
protection	of	secrets.	Klave	enables	the	confidential	interaction	between	encrypted	data	in	unsecured	
operating	systems	and	secure	hardware	enclaves.

The	goal	behind	Klave’s	technology	 is	to	protect	trustless	application’s	business	 logic	and	data	from	
untrusted	 parties	 or	malicious	 actors	 (including	 platform	 providers)	 and	 vice-versa.	 To	 do	 so	 Klave	
leverages	the	best	hardware	and	sandbox	isolation.

7.1.1. Hardware isolation

Each	 trustless	 app	deployed	on	Klave	 runs	within	 a	 TEE	 called	an	enclave.	 Enclaves	are	an	exciting	
branch	of	TEEs	where	a	general-purpose	chip	(typically	the	main	application	processor	of	the	system)	
offers	 a	 hardware	 isolation	 solution	 to	 execute	 critical	 code	 fragments	 protected	 from	 any	 other	
system	component	interference.	Klave	uses	Intel®	Software	Guard	Extensions	(Intel®	SGX)	which	offers	
hardware-based	memory	encryption	that	isolates	specific	application	code	and	data	in	memory.

Intel®	 SGX	 enables	 falsification	 resistance	 capabilities	 protects	 against	 attacks	 coming	 from	 the	
Operating	 System	 (OS),	 maintains	 secrecy	 while	 processing	 and	 provides	 remote	 attestation	 and	
hardware	acceleration	for	cryptography.

7.1.2. Runtime isolation

The	Klave	virtual	machine	hosting	the	trustless	apps	is	leveraging	on	WebAssembly	(WASM).	Each	app	
is	compiled	in	WASM	and	hosted	within	a	WASM	runtime	on	Klave	(WAMR).	In	simpler	terms,	on	every	
system	which	has	a	WASM	virtual	machine	runtime,	a	WASM	application	(binary)	will	run	in	the	same	
way.	In	addition,	they	all	benefit	from	the	WASM	sandboxed	environment	that	is	separated	from	the	
host	runtime	using	fault	isolation	techniques	and	ultimately	protecting	the	host	from	guests.

Mixing	 both	 hardware	 isolation	 through	 TEEs	 and	 runtime	 isolation	 through	 WASM	 enables	 the	
protection	of	the	guest	from	the	host	for	the	first	and	the	protection	of	the	host	from	the	guest	for	the	
second.

17

7.1.3. Host isolation

As	powerful	as	enclaves	are	they	come	with	limitations.	They	live	in	their	own	segregated	and	protected	
memory	area	and	prevent	access	to	key	operating	system	functionalities.	Leveraging	only	on	enclaves	
would	be	like	having	a	powerful	computer	lacking	essential	components.	To	remediate	and	add	essential	
components	 such	 as	 communications,	 logging	 infrastructure,	 and	 file-system	 access	 (database,	 file	
management)	Klave	provides	a	set	of	host-side	 libraries.	However,	as	 the	host	cannot	be	trusted	by	
enclaves,	Klave	introduced	the	concept	of	crypto-delegation	to	maintain	security	between	the	host	and	
enclaves.

7.1.4. Crypto-delegate

The	 security	model	 between	 enclaves	 and	 the	 host	 is	 crucial.	 Enclaves	 assume	 the	 host	 could	 be	
compromised,	so	they	always	demand	proof	of	the	host’s	integrity.	This	is	achieved	through	a	crypto-
delegate,	similar	to	a	zero-knowledge	proof.	When	an	enclave	calls	the	host,	a	cryptographic	challenge	
is	 included.	 The	 host	 must	 respond	 with	 proof	 associated	 with	 the	 challenge.	 Valid	 proof	 ensures	
acceptance	of	the	call,	while	invalid	proof	leads	to	rejection	and	rescheduling.	Klave	calls	these	crypto-
delegates,	and	the	concept	is	called	crypto-delegation.	They	cover	key	OS	functionalities	like	file-system	
access,	mass	storage	and	environment	variables.	Klave	provides	substitutes	for	system	calls,	enabling	
secure	 sandboxed	 applications	 without	 compromising	 data	 integrity	 or	 privacy.	 Crypto-delegation	
techniques	 include	 various	 cryptographic	 challenge/proof	 pairs	 like	 reverse	 hash	 lookups,	 merkle	
proofs	and	digital	signatures.

7.2. Node

A	Klave	node	is	a	physical	server	hosting	the	Klave	runtime	composed	of	the	host	and	the	enclaves	part.	
The	node	in	addition	to	running	Klave	enables	you	to	send,	receive	or	forward	information.	Klave	nodes	
leverage	hardware	compatible	with	Intel®	SGX	to	support	the	hardware	enclave.	Each	Klave	node	has	
its	own	identity	for	attestation	and	direct	client	connections.

18

7.3. Cluster and distributed consensus algorithm

To	ensure	high	availability	and	business	continuity,	applications	are	deployed	on	clusters	instead	of	single	
nodes.	A	cluster	 is	a	network	of	nodes	communicating	through	a	peer-to-peer	protocol.	While	 load-
balancing	requests	(queries	or	transactions)	are	a	primary	function	of	a	cluster,	it	is	equally	important	
to	maintain	consistency	across	all	nodes	to	behave	as	a	single	system.	To	achieve	this	Klave	uses	the	
consensus	algorithm	Raft,	which	provides	an	easy	implementation	and	formal	safety	guarantees.

7.3.1. BFT-Raft

Raft	 is	 a	 consensus	algorithm	 that	provides	a	way	 to	distribute	a	 state	machine	across	a	 cluster	of	
computing	 systems,	 ensuring	 that	 each	 node	 in	 the	 cluster	 agrees	 upon	 the	 same	 series	 of	 state	
transitions,	through	a	total	ordering	of	log	entries.	Raft	implements	consensus	through	a	leader-based	
approach,	where	 a	 leader	 is	 elected	 to	manage	 the	 replication	 of	 the	 state	machine.	 A	 Raft	 leader	
receives	client	requests,	appends	them	to	a	log	and	replicates	them	to	the	other	nodes	in	the	cluster.	
Once	the	majority	of	nodes	have	acknowledged	the	log	entry,	the	leader	commits	the	entry	and	notifies	
the	client.

Raft	provides	a	separation	of	logic	that	makes	it	more	understandable	than	other	consensus	algorithms,	
such	as	Paxos,	from	which	Raft	is	derived.	While	raft	prevents	random	errors	from	having	a	significant	
effect,	it	is	ineffective	against	a	malicious	adversary	that	tries	to	subvert	its	consistency	(i.e.,	not	byzantine	
fault-tolerant).

To	make	Raft	byzantine	fault-tolerant,	Klave	uses	the	capabilities	of	TEEs.	Implementing	features	such	as	
enabling	mutual	attestation	between	all	peers	in	a	cluster,	the	addition	of	nodes	to	Raft	consensus	and	
TEEs	attestation,	signed	and	encrypted	messages	between	peers	and	finally	the	usage	of	a	log	journal	
where	entries	authenticate	the	entire	history	up	to	the	entry.

19

7.3.2. Logchain

In	our	version	of	Raft,	we	use	a	log	journal	(aka.	logchain)	to	store	all	transactions	that	are	applied	to	the	
cluster.	

To	ensure	the	security	and	confidentiality	of	the	data	stored	in	the	log,	we	encrypt	the	log	entries	using	a	
strong	encryption	algorithm.	In	addition,	we	protect	the	encryption	keys	for	the	log	entries	using	Shamir’s	
Secret	Sharing	scheme.	Splitting	the	encryption	key	for	each	log	entry	into	multiple	shares	and	distributing	
each	share	to	different	nodes	in	the	cluster,	ensures	that	the	log	entries	are	protected	even	if	some	nodes	
in	the	cluster	are	compromised.	To	access	the	encryption	key	and	decrypt	the	log	entry,	a	quorum	of	
nodes	must	come	together	and	combine	their	shares	to	reconstruct	the	key,	and	therefore	it	becomes	
necessary	to	compromise	not	one,	but	several	nodes	to	read	the	log.	

To	ensure	that	a	log	entry	authenticated	the	entire	history	up	to	the	entry	itself,	log	entries	are	chained	
cryptographically	with	each	 log	entry	containing	a	hash	digest	of	 the	previous	ones.	This	ensures	 the	
integrity	of	historical	data,	similar	to	the	chaining	mechanism	used	in	a	blockchain	but	on	logs	and	not	on	
blocks.

7.4. Secure Connection Protocol (SCP)

To	connect	to	an	application	hosted	on	a	Klave	node,	users	must	use	the	Secure	Connection	Protocol	
(SCP).	This	protocol	is	designed	to	authenticate	the	identity	of	the	remote	node	owner	like	any	HTTPS	
would	do.	But	more	importantly,	SCP	allows	the	end	client	to	verify	the	identity	of	the	remote	enclave	
running	the	application	and	positively	identify	the	code	of	the	enclave.

SCP	builds	upon	TLS,	which	provides	an	encrypted	channel	of	communication	to	the	host	 layer	of	a	
Klave	node.	But	additionally,	 the	SCP	provides	an	 inner	secure	communication	channel	using	a	256-
bit	elliptic	curve	key	pair,	where	the	key	pair	can	be	remotely	attested	to	prove	that	the	key	has	been	
generated	by	and	protected	by	a	valid	TEE	and	that	the	TEE	is	running	the	correct	code.	As	a	result,	
with	SCP	there	is	proof	that	the	server-side	program	is	the	correct	one,	deployed	with	the	integrity	and	
confidentiality	properties	provided	by	the	TEE.	

SCP	 is	 a	 bi-directional	 authentication,	 forcing	 the	 client	 to	 reveal	 pseudonymous	 information	 for	
enforcing	access	rights	and	controls.	The	SCP	is	compatible	with	modern	browsers	and	tablets,	making	
it	easy	to	integrate	into	web	pages	and	mobile	applications	to	deliver	trustless	apps.

20

7.5. Ledger and integrity

One	of	 the	key	 features	of	Klave	 is	 its	ability	 to	maintain	the	state	of	deployed	applications	through	
encrypted	ledgers.	These	ledgers	are	stored	in	a	key-value	storage	on	the	host	side	but	are	protected	
from	the	host	nonetheless.	Both	keys	and	values	 inserted	are	constantly	subject	 to	encryption	and	
cryptographic	 integrity	 checks.	When	an	application	processes	 a	 log,	 it	 can	 result	 in	 a	 combination	
of	multiple	actions,	such	as	updating	its	application	state,	notifying	end	users,	 interacting	with	other	
trustless	apps	and	interacting	with	web	services.

The	table	for	keys	and	values	are	reverse	hash	 lookup	versions	that	bind	a	256-bit	hash	digest	to	a	
key,	or	a	value	encrypted	using	deterministic	encryption.	The	hash	is	protected	from	known	plaintext	
and	known	ciphertext	attacks	with	obfuscation.	The	table	of	correspondence	binds	the	hash	of	 the	
key	 to	 the	hash	of	 the	value	and	 is	 implemented	using	a	cryptographically	authenticated	dictionary	
with	a	modified	Merkle	Patricia	Trie.	Both	the	key	hashes	and	the	value	hashes	in	the	authenticated	
dictionaries	are	obfuscated	to	prevent	any	form	of	inference.	

Klave	ledgers	are	NoSQL	in	nature,	and	there	are	no	impositions	on	how	they	should	be	structured.	
Each	table	is	composed	of	a	table	for	keys,	a	table	for	values	and	a	table	of	correspondence.	Ledgers	
in	Klave	are	organised	in	a	hierarchical	way,	with	lower	levels	corresponding	to	tables	and	higher	levels	
using	the	table	of	correspondence	to	provide	an	overarching	integrity	structure.	This	allows	the	state	
of	the	entire	data	in	a	cluster	to	be	boiled	down	to	a	single	256-bit	hash,	which	can	be	used	for	proofs	
and	cryptographic	commitments	and	can	be	used	to	control	and	demonstrate	transactional	integrity	
in	hindsight.

7.6. The Klave Network

A	cluster	 is	a	network	of	nodes	connected	and	supporting	an	app	or	a	group	of	applications	that	are	
transitionally	synchronised	through	BFT-RAFT.	Nodes	on	a	cluster	can	communicate	with	nodes	of	other	
clusters	by	positively	 identifying	 them	and	authenticating	 themselves.	 This	 is	done	 through	a	 version	
of	the	SCP	client	that	sits	inside	the	Klave	enclaves	and	is	called	ICP	(for	Inter-Cluster	Protocol).	Future	
developments	will	also	allow	to	transitionally	bind	several	clusters	together	but	assume	some	degree	of	
transactional	sharing.	The	network	of	all	Klave	clusters,	public	and	private,	is	collectively	called	the	‘Klave	
network’.

8.0. Verifiability and attestations 21

8.0. Verifiability and attestations

Limiting	and	trying	to	remove	trust	means	that	the	systems	should	be	more	transparent	and	honest.	If	
you	can	verify,	you	don’t	have	to	trust.	To	achieve	that,	Klave	provides	different	techniques	to	the	user.

• Remote attestation	-	A	very	important	aspect	of	Intel®	SGX	(and	more	generally	TEEs)	is	attestation.	
This	is	a	mechanism	for	a	remote	user	to	verify	that	the	application	runs	on	real	hardware	in	up-to-
date	hardware	and	software	with	the	expected	initial	state.	Remote	attestation	ultimately	provides	the	
assurance	to	the	user	that	the	remotely	executing	SGX	enclave	is	identified	and	secured	and	that	the	
correct	code	is	executed.

• 	Cryptographic	proof	-	Klave	exposes	different	cryptographic	proofs	to	check	that	the	code	deployed	
is	the	code	intended,	that	the	communication	to	the	app	is	secured	and	encrypted	(only	decipherable	
by	 the	 app	 itself)	 and	 that	 the	 integrity	 of	 data	 is	maintained	 through	 different	 techniques	 (Table	
hashroot	verification,	Merkle	proof	etc.)

• 	Transparency	-	Klave’s	code	will	be	made	open-source	and	the	fingerprint	of	the	released	version	of	
enclaves	will	be	provided	to	limit	the	trust	in	the	platform	provider	even	more,	enabling	code	source	
checking	and	remote	attestation	to	verify	the	version	deployed.

9.0. User Experience 22

9.0. User Experience

To	ensure	Klave’s	widespread	adoption,	Klave	is	focused	on	developers	and	provides	an	environment	that	
integrates	directly	into	their	workflow	and	that	is	GitOps-friendly	from	the	get-go.	On	Klave,	development	
and	 application	 life-cycle	management	 need	 to	 be	 easy	 for	 developers,	 which	 is	 why	 Klave	 provides	
different	functionalities	to	help	developers	in	that	endeavour.

9.1. Application scaffolding

In	Klave,	every	application	that	 is	developed	and	deployed	must	be	declared	within	the	platform.	This	
declaration	 includes	a	unique	name,	version	and	 identifier,	along	with	all	 the	APIs	 that	 the	application	
provides.	 APIs	 can	 be	 classified	 as	 either	 queries	 or	 transactions.	 Queries	 are	 methods	 that	 return	
information	without	modifying	the	underlying	state.	Transactions,	on	the	other	hand,	modify	the	underlying	
state	of	an	application,	which	becomes	persistent.	It’s	important	to	note	that	transactions	do	not	involve	
payment	here	but	are	transactional	in	the	sense	of	database	management	systems.	Klave	is	providing	
an	application	scaffolding	tool	that	can	be	found	here	https://npm.io/package/create-on-klave	to	scaffold	
applications	within	minutes.

9.2. Queries and transactions

Queries	are	read-only	methods	that	retrieve	data	from	the	underlying	state	but	do	not	modify	it.	They	are	
typically	used	to	obtain	information	or	perform	computations	based	on	existing	data	without	changing	
it.	For	instance,	a	query	method	might	return	the	current	balance	of	a	particular	account	or	compute	the	
average	price	of	a	certain	asset	over	a	given	period.	

Transactions,	on	the	other	hand,	are	written	methods	that	modify	the	underlying	state,	making	changes	
persistent.	They	can	be	used	 to	create	new	assets,	 transfer	 them	between	accounts,	update	existing	
records	or	 perform	other	operations	 that	 affect	 the	 state	of	 the	 system.	 Transactions	 are	 subject	 to	
different	receipt	messages	that	 inform	the	user	of	their	processing	state,	 including	whether	they	have	
been	successfully	executed	or	failed	due	to	some	error.	

It’s	important	to	note	that,	due	to	the	consensus	semantics	used	by	Klave,	there	may	be	uncertainty	about	
the	time	of	execution	or	even	the	possibility	of	execution	of	a	transaction.	To	mitigate	this	uncertainty,	Klave	
employs	a	system	of	pushing	the	state	of	transaction	scheduling	to	keep	users	informed	of	transactional	
certainty.	 This	 allows	 users	 to	 better	 understand	 the	 state	 of	 their	 transactions	 and	make	 informed	
decisions	based	on	that	information.	

While	 some	 functionalities	of	 the	SDK	are	available	 in	both	query	and	 transaction	modes,	others	are	
only	applicable	 to	one	or	 the	other.	For	example,	 it	 is	not	possible	 to	write	 to	a	 ledger	using	a	query	
method,	as	this	would	violate	the	read-only	nature	of	queries.	Similarly,	transactional	processing	requires	
additional	checks	and	validations	to	ensure	that	the	proposed	changes	are	valid	and	authorised,	which	is	
not	necessary	for	read-only	queries.	

23

This	level	of	declaration	ensures	that	all	applications	within	the	Klave	ecosystem	are	transparent	and	can	
be	accessed	by	other	applications	or	authenticated	end	users.	Additionally,	it	enables	seamless	integration	
of	different	applications	in	the	platform,	promoting	composability	and	interoperability.	

By	having	a	well-defined	and	structured	way	to	declare	and	access	applications,	Klave	provides	a	secure	
and	streamlined	way	to	develop,	deploy	and	manage	the	lifecycle	of	an	application.	This	allows	developers	
to	focus	on	building	the	logic	of	their	applications,	while	Klave	handles	the	underlying	infrastructure.	

9.3. Subscriptions

In	addition	to	standard	query	execution,	Klave’s	SDK	allows	for	a	powerful	feature	known	as	subscriptions.	
When	a	query	 is	 executed	as	a	 subscription,	 it	 creates	an	event-driven	automation	 that	 is	 constantly	
monitoring	changes	in	the	underlying	data.	This	automation	triggers	the	query	in	push	mode	whenever	a	
change	occurs	that	could	potentially	affect	the	query	result.	

This	 is	particularly	useful	 in	real-time	applications	such	as	trading	platforms,	where	market	conditions	
can	change	rapidly,	and	users	need	to	be	kept	up	to	date	with	the	latest	information.	By	subscribing	to	a	
query,	users	can	receive	automatic	updates	as	soon	as	new	data	becomes	available,	without	needing	to	
manually	poll	the	data	themselves.	

Subscriptions	can	be	easily	managed	by	the	user,	with	the	option	to	unsubscribe	or	disconnect	at	any	
time.	This	ensures	that	users	only	receive	the	information	they	need,	when	they	need	it,	without	being	
inundated	with	irrelevant	data.

24

9.4. Functionalities provided by the SDK

The	Klave	SDK	provides	a	range	of	powerful	capabilities	that	allow	developers	to	build	privacy	and	integrity-
orientated	applications	with	ease.	Here	are	the	key	capabilities	offered	as	of	2023:

1. Ledger:	 Offers	 a	 robust	 NoSQL	 database	 with	 advanced	 indexing	 capabilities	 to	 store	 and	
manage	data.	Developers	 can	define	 custom	 schemas,	manage	 access	 control,	 and	perform	
complex	queries.	

2. 	 	Subscriptions	 and	 notifications:	 Developers	 can	 create	 data	 triggers	 with	 subscription	
mechanisms	 to	monitor	 changes	 in	data	 in	 real	 time.	This	allows	 for	 immediate	updates	and	
notifications	to	be	sent	to	the	relevant	parties	when	data	is	changed.	

3. Communications: Provides	 a	 secure	 communication	 protocol	 with	 the	 end-user	 device,	
including	real-time	interaction.	

4.	 	 	Cryptography:	 Includes	built-in	support	for	cryptographic	computations	within	both	queries	
and	transactions.	It	also	provides	the	ability	to	manage	randomness	consistently	across	a	cluster.	

5. Web:	Offers	the	ability	 to	 interact	with	the	web.	 It	 is	possible	to	call	an	HTTPS	API,	negotiate	
the	sending	of	an	email	over	SMTP,	and	call	an	API	to	send	an	SMS	or	a	push	notification	to	a	
mobile	phone.	This	allows	developers	to	integrate	with	external	services	and	applications.	It	is	
important	to	note	that	this	is	an	important	change	from	most	distributed	systems	that	prevent	
such	operations	from	being	performed	due	to	the	intrinsically	random	nature	of	web	interaction.

6. Cross-application communications:	Developers	can	leverage	an	ecosystem	of	applications	
deployed	on	Klave	and	can	call	other	applications	natively.	

7. Cross-cluster communications:	Developers	can	create	communications	between	clusters	with	
subscription	mechanisms,	allowing	for	seamless	collaboration	across	different	environments

8. Branching:	Provides	the	ability	to	abort	a	transaction,	perform	nested	transactions	via	calls	to	
other	applications,	or	enqueue	queries	dependent	on	the	transactional	success	of	an	operation.

9. Upgrades and releases:	Provides	tools	to	manage	releases,	allowing	developers	to	deploy	new	
versions	of	their	applications	with	ease.

10.	 	AI	(Artificial	Intelligence):	Currently	supports	a	set	of	AI	libraries	focusing	on	model	inference.	
Some	of	the	models	supported	include	SVM,	LightGBM	and	various	regressions.	However,	Klave’s	
ambition	is	to	be	able	to	provide	AI	model	training	within	secure	enclaves	soon.

25

9.5. Supported languages for writing applications

The	Klave	SDK	uses	AssemblyScript	which	is	a	TypeScript-like	language.	It	is	worth	noting	that	on	Klave,	
the	SDK	is	designed	to	be	compatible	with	all	WASM-compatible	languages,	meaning	that	developers	can	
use	any	programming	language	that	can	compile	to	WebAssembly	to	build	applications.	This	includes	
popular	languages	such	as	Rust,	C	and	Go,	among	others.	The	ability	to	use	other	WASM-compatible	
languages	is	significant	because	it	allows	for	greater	flexibility	in	development	and	integration.	It	is	an	
effort	we	have	made	to	attract	a	broader	community	of	developers,	to	 lead	to	more	innovation	and	
growth	for	the	network.	

9.6. How to connect to a cluster

Klave	provides	an	SCP	that	allows	end	users	to	connect	to	a	Klave	node,	authenticate	themselves	and	
authenticate	the	cluster	they	want	to	communicate	with	through	a	cluster	key.	The	communication	is	
based	on	TLS-encrypted	WebSockets	or	TCP	to	provide	two-way	communications.	This	allows	the	end-
user	to	send	commands	to	the	platform	and	for	the	platform	to	push	messages	back	to	the	end-user.	
The	SCP	is	provided	with	a	connector	that	encrypts	commands	and	decrypts	responses	on	the	fly	on	
the	end-users	device.

9.7. Deployment and upgrades

Upgrading	and	redeploying	an	application	is	an	essential	aspect	of	software	development	and	Klave	
provides	a	seamless	way	to	achieve	this.	When	an	application	needs	an	upgrade,	it	can	be	done	through	
a	transaction,	which	is	traceable	and	auditable.	This	upgrade	transaction	allows	developers	to	update	
their	applications	and	deploy	a	new	version	seamlessly.	

10.0. Conclusion 26

10.0. Conclusion

Bootstrapping	honesty	is	at	the	heart	of	Klave’s	proposition.	Bringing	forward	a	platform	generalising	
the	principles	of	data	integrity	and	falsification-resistant	computation	with	a	focus	on	privacy	by	consent,	
by	design	and	by	default.	Klave	brings	honesty	and	allows	for	a	trustless	ecosystem	by	replacing	trust	
as	a	belief	with	a	system	of	proof.	It	solves	the	seemingly	intractable	conflicts	between	privacy,	flexibility	
(Turing	 Completeness),	 security	 and	 performance	 (high-throughput	 and	 low	 latency)	with	 a	 stateful	
and	multiparty	 solution.	 Leveraging	 secure	 hardware	 and	 drawing	 upon	 crypto-graphic	 techniques	
from	blockchain	and	differential	privacy,	allows	blockchain-grade	integrity	as	a	service.	One	with	much	
greater	performance,	at	a	fraction	of	its	energy	cost	and	with	embedded	privacy	and	smart	contract	
capabilities.	This	is	what	trustless	means,	not	untrustworthy,	but	rather	the	replacement	of	belief	by	
technical	evidence,	systematically.

Klave	focuses	on	the	developer	experience	and	simplifies	access	to	confidential	computing	technologies	
are	key	to	supporting	the	widespread	adoption	of	trustless	computing.	This	will	be	largely	driven	by	ease	
of	coding,	and	accessibility	to	development	in	the	most	popular	programming	languages.	Providing	a	
PaaS	offering	will	also	enable	developer	communities	to	elaborate	ideas	quickly	and	validate	business	
impact	in	a	timely	manner.

It	has	the	power	to	redraw	the	map	of	digital	services,	change	our	world	for	the	better,	strengthen	our	
right	to	privacy,	and,	as	a	by-product,	create	new	business	opportunities	through	trustless	collaboration.

www.klave.com 20/06/2023

